
Deep NLP-Based Co-evolvement for Synthesizing
Code Analysis from Natural Language

Zifan Nan
Department of Computer Science
North Carolina State University
Raleigh, North Carolina, USA

znan@ncsu.edu

Hui Guan
College of Information and Computer Sciences

University of Massachusetts Amherst
Amherst, Massachusetts, USA

huiguan@cs.umass.edu

Xipeng Shen
Department of Computer Science
North Carolina State University
Raleigh, North Carolina, USA

xshen5@ncsu.edu

Chunhua Liao
Lawrence Livermore National Laboratory

Livermore, California, USA
liao6@llnl.gov

Abstract
This paper presents Deepsy, a Natural Language-based syn-
thesizer to assist source code analysis. It takes English de-
scriptions of to-be-found code patterns as its inputs, and auto-
matically produces ASTMatcher expressions that are directly
usable by LLVM/Clang to materialize intended code analysis.
The code analysis domain features profuse complexities in
data types and operations, which make it elusive for prior
rule-based synthesizers to tackle. On the other hand,machine
learning-based solutions are neither applicable due to the
scarcity of well labeled examples. This paper presents how
Deepsy addresses the challenges by leveraging deep Natural
Language Processing (NLP) and creating a new technique
named dependency tree-based co-evolvement. Deepsy features
an effective design that seamlessly integrates Natural Lan-
guage dependency analysis into code analysis and meanwhile
synergizes it with type-based narrowing and domain-specific
guidance. Deepsy achieves over 70.0% expression-level accu-
racy and 85.1% individual API-level accuracy, significantly
outperforming previous solutions.

CCSConcepts: • Software and its engineering→ Source
code generation.

Keywords: Program synthesis, ASTMatcher, natural language
programming, compiler
ACM Reference Format:
Zifan Nan, Hui Guan, Xipeng Shen, and Chunhua Liao. 2021. Deep
NLP-Based Co-evolvement for Synthesizing Code Analysis from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
CC ’21, March 2–3, 2021, Virtual, Republic of Korea
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8325-7/21/03. . . $15.00
https://doi.org/10.1145/3446804.3446852

Natural Language. In Proceedings of the 30th ACM SIGPLAN Inter-
national Conference on Compiler Construction (CC ’21), March 2–3,
2021, Virtual, Republic of Korea. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3446804.3446852

1 Introduction
This paper presents the first systematic exploration on syn-
thesizing code from Natural Language (NL) to assist program
analysis.

Motivation. Source code analysis is fundamental for soft-
ware quality controls, underpinning various program opti-
mizations, software debugging, security, and so on. Devel-
oping programs for code analysis has been a daunting task
for general programmers, for the needs to dive deep into a
usually complex compiler infrastructure to understand the
bolts and nuts before making any meaningful extensions.

ASTMatcher [3] is a popular tool created to ease the pro-
cess. As a module in Clang/LLVM [22], it provides a set of
APIs for programmers to use to construct Abstract Syntax
Tree (AST) matching expressions. Such expressions can then
be integrated into a Clang program to find some part of the
AST or the source code of a given program of interest. Ta-
ble 1 gives three examples of nested ASTMatcher API calls
for finding some code patterns in programs.
However, ASTMatcher has not received much adoption

beyond expert developers. The primary reason is that, like
other program analysis tools, ASTMatcher offers a large set
of APIs that a programmer needs to learn before using them
to express the code patterns of their interest. In ASTMatcher,
there are over 500 APIs, and a large portion of them appear
quite useful in many code analysis tasks: In a code analysis
tool Clang-tidy, for instance, 310 ASTMatcher APIs are used
in 214 source code files, and 110 APIs among them appear
more than 10 times. The APIs have many subtle differences
and various usage conditions. To use them, programmers
need to go through a long learning process, and even af-
ter that, often have to look up the references frequently

https://doi.org/10.1145/3446804.3446852
https://doi.org/10.1145/3446804.3446852

CC ’21, March 2–3, 2021, Virtual, Republic of Korea Zifan Nan, Hui Guan, Xipeng Shen, and Chunhua Liao

Table 1. Examples of ASTMatcher expressions.
English description Matcher expression

1

Find for statements whose
init portion declares a
single variable which is
initialized to the integer
literal 0.

forStmt(hasLoopInit(
declStmt(hasSingleDecl(
varDecl(hasInitializer(
integerLiteral(equals(0))))))));

2
Return a binary operator, [b].
[b]’s name is “=”. [b]’s right
hand side is integer 0.

binaryOperator(
hasOperatorName(“=”),
hasRHS(integerLiteral(
equals(0))));

3
Search for all the functions
that use a particular global
variable named “PI”.

functionDecl(
hasDescendant(declRefExpr(to(
varDecl(hasGlobalStorage(),
hasName(“PI”))))));

when writing code analysis programs. This problem of AST-
Matcher typifies the major hurdle standing between general
programmers and source code analysis.
The complexities of source code analysis make it elusive

for prior synthesis solutions. Prior work has tackled domains
consisting of only a few kinds of operations or simple data
type systems. For instance, text editing [7] contains around
40 operations on strings or integers. The popular domain,
regular expression synthesis [21, 28, 31, 46], contains only a
handful of operations on characters. No DSLs in the recent
studies [14, 24] have more than 50 operations and all work
on data of simple types. In contrast, ASTMatcher contains
over 500 APIs dealing with over 200 types of data. These data
types form a full-fledged class hierarchy with many layers
of type inheritance.
Most recent program synthesis work [7, 10, 16, 25, 26,

31, 36, 45] builds on statistical machine learning methods.
These methods have used thousands or even millions of ex-
amples [10] for learning. Given the profuse complexity of
the ASTMatcher domain, applying those methods would
need even more examples. But there are not yet many real-
world ASTMatcher examples—due to the exact barrier that
this work tries to remove. And moreover, in this context,
it can be difficult for users to come up with examples. De-
pending on what training is used, an example needed by
prior methods could be an ASTMatcher specification or a
whole program with codelets labeled for each code pattern
of interest.

On the other hand, previous rule-based methods [23] heav-
ily rely on data types for selecting constructs to use and for
deciding their relative positions in the synthesized expres-
sion. Although it works on the previous domain with simple
data types, its effectiveness quickly reduces when facing
the complex polymorphism permitted by the full-fledged
class hierarchy of ASTMatcher (as our experiments confirm,
Section 5.2).

Novelty. This work introduces Deepsy1, an NL-based code
synthesizer for source code analysis. Deepsy takes English
descriptions of to-be-found code patterns (e.g., column two

1Deep NLP-Guided Natural Language-Based Synthesizer for Code Analysis

in Table 1) as its inputs, and automatically produces AST-
Matcher expressions (e.g., column three in Table 1) that can
be used by LLVM/Clang to materialize the intended code
analysis.

Deepsy addresses the aforementioned challenges through
two distinctive features. First, it emphasizes the use of deep
NLP, particularly dependency-based NL parsing, to guide the
synthesis. Second, it uses an innovative technique, named
dependency-based co-evolvement, to address the entwined
challenges in API matching and ordering in the synthesis
process. API finding and API ordering are the two main tasks
in the synthesis. The former is about finding the suitable
APIs for each part of the input English query, and the lat-
ter is about putting these APIs in an appropriate order to
compose the final ASTMatcher expression. They depend on
each other. Ordering obviously needs to know what APIs
to order; inversely, the appropriate APIs to choose depends
on their orders in the final expression—for instance, the re-
turning type of a later API (e.g., declStmt() in Example 1
Table 1) needs to match with the type expected by its caller
API (e.g., hasLoopInit()). Although both tasks existed in
prior code synthesis problems, they were mitigated by ei-
ther a large number of examples or the simplicity of the
target domain. Unfortunately, neither of the conditions hold
for ASTMatcher. Deepsy addresses the special challenges
through a five-stage continuous evolvement scheme enabled
by dependency-based co-evolvement. The approach makesAPI
finding and API ordering able to leverage each other’s evolv-
ing results throughout their own refinements, effectively
resolving their tangled concerns.

We evaluate Deepsy through several experiments, inwhich,
Deepsy generates the matcher expressions for a set of Eng-
lish queries. Deepsy achieves 70.0% accuracy at the entire
expression level, significantly outperforming the 52% accu-
racy by previous rule-based methods. At the individual API
level, Deepsy gives 85.1% prediction accuracy. The results
demonstrate the effectiveness of the novel design of Deepsy
in code synthesis for complex domains with scarce labeled
examples.
This work has a specific focus, ASTMatcher in Clang/L-

LVM. The focus makes Deepsy relevant to a broad range of
users for the popularity of Clang/LLVM. Deepsy can help
lower the barrier to code analysis for software tool develop-
ers, programming educators or coding learners who need to
find certain types of code segments from code repositories.
For many of such analysis tasks, only front-end source code
pattern analysis is sufficient, in which, writing ASTMatcher
expressions is the most difficult part while the rest is largely
boilerplate code easily derivable from some templates an
IDE may provide. Meanwhile, the design and techniques
of Deepsy may provide some general insights to other code
synthesis problems in domains with scarce labeled examples.

This work makes the following main contributions:

• It presents one of the first NL-based ASTMatcher syn-
thesizers for source code analysis and demonstrates

Deep NLP-Based Co-evolvement for Synthesizing Code Analysis from Natural Language CC ’21, March 2–3, 2021, Virtual, Republic of Korea

Table 2. Examples of AST matchers.
Matcher Category Input Type Return Type Description
forStmt Node <ForStmt> <Stmt> Matches for statements.
varDecl Node <VarDecl> <Decl> Matches variable declarations.
hasLoop
Init

Traversal <Stmt> <ForStmt> Matches the initialization statement
of a for loop

hasName Narrowing std::string <NamedDecl> Matches NamedDecl nodes that
have the specified name.

the power of deep NLP in tackling complex domains
with scarce examples;

• It develops dependency tree-based co-evolvement, a novel
design of NL-based synthesis process that leverages
dependency relations while addressing the tangled
concerns of API finding and API ordering;

• It evaluates the effectiveness of the techniques through
a set of experiments and comparisons, demonstrating
the effectiveness of NLP-based synthesis for program
analysis.

2 Background
This section introduces the background on ASTMatcher and
dependency-based NLP.

ASTMatcher APIs. ASTMatcher is a tool in Clang/LLVM
that can be used to construct AST matching expressions that
correspond to code patterns of interest. There are totally
505 ASTMatcher APIs, called matchers. These matchers
are grouped into three categories: node matchers, narrowing
matchers, and traversal matchers. The number of matchers in
each category is 171, 159, and 175 respectively. Table 2 lists
four matchers as examples.

Node matchersmatch a specific type of AST node. In Table
2, the forStmt matcher matches the ForStmt nodes inside
an AST, and the varDecl matcher matches the variable dec-
laration nodes inside an AST. Narrowing matchers match at-
tributes on AST nodes, thus narrowing down the set of nodes
of the current node type to match on. In Table 2, the hasName
matcher matches the nodes that have a specified name. Tra-
versal matchers allow traversal between AST nodes. For ex-
ample, using the hasLoopInit matcher inside the forStmt
matcher moves the matching focus from a ForStmt node to
the initialization statement of that for loop.

The arguments and output of a matcher are usually asso-
ciated with the type of the matched AST node (e.g. columns
Input Type and Return Type in Table 2). The varDeclmatcher,
for instance, has input parameter type as Matcher<VarDecl>
and return type as Matcher<Decl>. Deepsy leverages the
input and return type to refine the mapping from NL to
matchers.
An ASTMatcher expression is a sequence of matchers.

It always starts with a node matcher. ASTMatcher has an
alternative restriction: The callees (i.e., arguments) of a node
matcher can be only the other two classes of matchers and
vise versa. A matcher expression can be integrated into a
Clang program to find AST nodes and code segments that
match the target code patterns in a given program.
ASTMatcher features a complex data type system that

contains a full-fledged class hierarchy. There are totally 209

major data types. These types form the class hierarchy of
the AST in Clang. Most classes are the descendants of root
classes such as Decl, Stmt, Type. For example, the Decl class
has 21 sub-classes, and one of the sub-classes NamededDecl
has 14 sub-classes, including ValueDecl, which has 7 sub-
classes. A consequence of the type hierarchy is the entailed
polymorphism: All descendants of a class can be type com-
patible at places where that class is expected. Polymorphism
complicates the use of data types for expression synthesis.
Previous rule-based synthesis methods strongly rely on data
types for choosing the right components to use in an ex-
pression. The common presence of polymorphism in the
ASTMatcher domain makes them hard to apply.

Dependency Tree. Dependency trees are the results of
applying dependency parsing on sentences. Dependency
parsing is an automatic approach that analyzes binary asym-
metrical relations (called dependency relations) between
words within a sentence [19]. A dependency relation is com-
posed of a subordinate word (called the dependent), a word
on which it depends (called the governor), and a dependency
type between the two words. Figure 1 shows the dependency
structure of an example sentence generated by the Standford
CoreNLP dependency parser [30]. The dependency relations
are represented as arrows pointing from a governor to a
dependent. Each arrow is labeled with a dependency type.
A dependency tree uses a tree to represent the dependency
structure of a sentence. The root of the tree is the word in
the sentence in a “root” dependency relation. Each node in
the tree is a word in the sentence. A node 𝑛1 is the parent of
another node 𝑛2 if 𝑛1 is the governor of 𝑛2.

3 Challenges and Solution Overview
For each word or phrase in a given English query, it may
match with multiple matchers in their names or documen-
tations. For instance, in Example 1 in Table 1, the keyword
“declare” matches with 113 matcher APIs’ (partial) names or
documentations. Most of them are wrong choices for their
mismatching with the context in the query. The challenge is
how to determine the best choice.

An even harder challenge is in order. The final ASTMatcher
expression is usually a series of matchers composed together
in a certain order, as the examples in Table 1 have shown.
The correct order, however, often differs from the appearing
order of the corresponding words or phrases in the input
query. The challenge is how to infer the right order of the
matchers.

The two challenges, matchers and order, are entwined to-
gether. On one hand, the order of matchers clearly depends
on what matchers are there. On the other hand, the appropri-
ate matcher for a phrase depends on its position relative to
other matchers. In Example 1 in Table 1, if the matcher API
corresponding to word “init” follows forStmt in the final
ASTMatcher expression, then it must be a matcher API that
has a return type compatible with Matcher<ForStmt>. But if
its correct position follows varDecl, it would need to be a

CC ’21, March 2–3, 2021, Virtual, Republic of Korea Zifan Nan, Hui Guan, Xipeng Shen, and Chunhua Liao

Figure 1. Dependency structure.

Amended NLPEnglish query

Tree reordering &
pruning

Individual
translation

• word translation
• longest-match phrase trans.

• adjustment of relative clauses
• auxiliary leaves pruning

Candidate API
refinement

• order-based type-driven focusing
• scope-based prioritization

Combined gap
filing

• rule-directed gap filing
• reorder-based gap filing
• search-based gap filing

Dependency tree

Dep. tree annot. w/ candidate matcher sets

Dep. tree w/ refined candidate matcher sets

Adjusted dependency tree

Final matcher expression

• Dependency analysis with light
regulations

NLP

Matcher
documentation

Matcher
knowledge

base

Evolvement
of order

Evolvement
of matchers

Initial order

Refined order

Initial matchers

Refined matchers

Final order Final matchers

Workflow Techniques

Tree combination
(optional)

• Combination of dependency
trees from multiple sentences.

One/multiple dependency trees

Figure 2. Overall workflow of Deepsy, its main techniques,
and the enabled evolvement of the order and matchers of
ASTMatcher expressions.

matcher of return type compatible with Matcher<VarDecl>.
The inter-dependence between finding matchers and finding
their right order makes the problem especially difficult to
tackle. A simple divide and conquer strategy cannot work.

Our new solution, dependency tree-based co-evolvement, is
designed to overcome these challenges by centering around
the dependency tree of the input query, and co-evolving the
matcher finding and the order finding together. The strategy
allows it to fully leverage the dependency relations of the
query and dependency relationship.
More specifically, it creates a set of candidate matchers

for each phrase and word in the query, which are then re-
fined and prioritized through order-based type-driven focus-
ing and scope-based prioritization; the former capitalizes on
argument and return types of matchers, and the latter em-
ploys the scopes of API documentation as heuristics. It em-
ploys the techniques, dependency tree restructuring and com-
bined gap filing, to address the order mismatching and
tangled concerns. The techniques gradually refine the or-
der of matchers and also fill gaps between matchers with
extra matchers to compose all together into one ASTMatcher
expression. Next, we describe each stage of Deepsy based on
the workflow in Figure 2.

4 Internals of Deepsy
This section describes all major stages inDeepsy by following
a top-down order as shown in Figure 2.

4.1 Matcher Knowledge Base Construction
This stage builds a knowledge base. It is the only stage that
happens ahead of time. The matcher knowledge base con-
tains three parts: a matcher table, a matcher graph, and the
type hierarchy of ASTMatcher. The matcher table contains
the knowledge of all the matchers listed in the official AST
Matcher Reference [3], as shown in Table 2. The knowledge
base is constructed by parsing the original AST Matcher
Reference automatically with a python script. The name of
a matcher usually is a combination of two or three words
or word abbreviations that imply the functionality of the
matcher. The description is a sentence that briefly describes
what this matcher matches. Deepsy leverages the name and
description of a matcher to search for matcher candidates
for a phrase in a query and then use the type properties to
refine the mapping. The matcher graph is a directed graph.
Each data type in ASTMatcher is represented as a node in
the graph. A directed edge 𝑥 → 𝑦 is created and labeled with
a matcher𝑚 if the matcher𝑚 has an input type 𝑦 and re-
turn type 𝑥 . The type hierarchy is the default class hierarchy
defined in ASTMatcher.

4.2 Amended NLP
This stage is the first stage in the workflow of Deepsy. It
takes an English query as its input, applies dependency-based
NLP analysis (CoreNLP [30]) to the query to produce the
dependency tree.

As the prior section has mentioned, a problem specific to
the program analysis domain is terminology confusion. We
use light regulations to address the problem. Specifically, we
require all of the special words to be put inside double-quotes.
So, find for loops should bewritten as find "for loops".
With the special words explicitly marked, Deepsy can easily
replace them with some understudies before applying NLP
to the input query. We use element_id as the understudy for
a particular special word (we assign each special word with
an id number); the NLP engine would label element_id as
NN (noun).

With terminology confusions resolved by the amendment,
the NLP engine analyzes the input query and produces the
dependency result. Deepsy then represents the result in a
dependency tree, as illustrated in Figure 3 (a). The root of
the tree is the word that depends on no other words in the
sentence (e.g., Find in Figure 3 (a)). If word X depends on
word Y in relation Z, then in the tree, X is a child of Y and
the edge (Y→X) carries Z on it. For instance, the top two
nodes in Figure 3 (a) come from the dependency shown in
the NLP result (Figure 1) that for loops (which has been
replaced with element_1) is the object of find (represented
with dobj relation).

Deep NLP-Based Co-evolvement for Synthesizing Code Analysis from Natural Language CC ’21, March 2–3, 2021, Virtual, Republic of Korea

Find

declares

literal

integeris

element_1

which

initializedsingle

variable

whose

portion

init

0

a

theto

dobj

nmod:poss amod

nsubj

acl:relcl

det amod

amod

dobj

nsubjpass auxpass nmod

case det nummod

Find

declares

literal

integer

element_1

initializedsingle

variable

portion

init

0

dobj

amod nsubj

vact

amod

amod

dobj

nmod

acl:relcl

nmod

forStmt

hasLoopInit

acl:relcl

ForStmt

declStmt
Stmt

0

equals

integerLiteral

hasInitializer

varDecl

hasSingleDecl
DeclStmt

Decl

VarDecl

Expr
Stmt

IntegerLiteral

double Value

1

1

2 31 Amended NLP Tree Reordering and Pruning Individual Translation Candidate Matcher Sets Refinement

5

Combined Gap Filling

3 4

3

3 4

3 4

43

5

(a) (b) (c)

21

4

3 4

5

Figure 3. The synthesis process.

When creating the tree, Deepsy allocates a candidate mat-
cher list for each node. This list will hold the potential match-
ers corresponding to the word in that node. At the end of
this stage, all lists are empty except for those of special terms
(element_id nodes). Because each of the special terms cor-
responds to one basic matcher (e.g., forStmt for for loop),
Deepsy simply puts that matcher into the list when creating
those tree nodes.
The dependency tree offers the underlying vehicle for

all of the remaining stages in Deepsy to work on. It gives
conveniences for Deepsy to leverage the words relations for
the dependencies the tree explicitly carries, as we will see
later.

4.3 Dependency Tree Combination
Many matcher expressions are easier to be described us-
ing multiple sentences. Deepsy allows users to use multi-
sentence description as an input query. In this case, Deepsy
parses each sentence independently using Amended NLP and
then joins the dependency trees into one single dependency
tree via the relations among tags.

One complexity in parsing multi-sentence description is to
resolve coreference. Coreference occurs when two or more
expressions refer to the same entity in a text. Finding the
coreference relations is the prerequisite to merging depen-
dency trees into a single one. The state-of-the-art coreference
resolution results, however, are still not quite accurate yet
(59.56% average F1 on multiple standard benchmarks [40]).

We propose tagging, a simple yet practical solution to
circumvent the difficulty, in which, tags are used to mark the
expressions that occur more than once. A tag is added at the
first occurrence of the expression and then later used to refer
to the expression whenever it is needed. The tag is called
label tag in the former case and called reference tag in the
latter one. An example tagged multi-sentence description is
shown as follows:
S1: Find a for statement, [s].
S2: [s]'s initial portion declares a single

variable, [v].

S3: [v] is initialized to the integer 0."

The tags include [s] and [v], which refer to “for statement”
and “a single variable” respectively. When “for statement”
appears for the first time in S1, a label tag [s] is appended to
the expression. In S2, [F] is a reference tag used to represent
“for statement”.

Dependency tree combination generates a single depen-
dency tree from a tagged multi-sentence description. Figure
4 illustrates the combination process. It follows two major
steps: (1) The multi-sentence description is split into single
sentences. Each sentence is transformed into a dependency
tree using the amended NLP. We refer to the dependency
tree of a sentence that contains a label tag as a parent tree
and that contains the reference tag as a child tree. (2) Two de-
pendency trees are connected by adding a new dependency
relation between the root node of a child tree and the node
corresponding to the label tag in a parent tree (called label
tag node). Two possible dependency relations could be added
depending on the relative positions of the node correspond-
ing to the reference tag in the child tree (called reference tag
node): If the reference tag node is the direct child of the root
node in a child tree, it indicates that the child tree is a detailed
explanation of the label tag. The child tree is appended to
the label tag node with the dependency relation “relcl:new”,
implying a relative clause relation with “which” statement.
Otherwise, the dependency relation is “relcl:poss:new”, im-
plying a relative clause relation with “whose” statement.
In figure 4, the dependency tree of S1 contains a label

tag node “elemement_1”. The dependency tree of S2 are
attached to the label tag node with the dependency relation
“relcl:poss:new”. The dependency tree of S3 are attached to
the label tag node “variable” with the dependency relation
“relcl:new”.

After a single dependency tree is created, all the reference
tag nodes are deleted from the tree.

4.4 Tree Reordering and Pruning
Although the order of nodes in the dependency tree aligns
with the suitable orders of matchers to a certain degree, there

CC ’21, March 2–3, 2021, Virtual, Republic of Korea Zifan Nan, Hui Guan, Xipeng Shen, and Chunhua Liao

Find

element_1

a

declares

portion

init s's

variable

a single

initialized

v integer

to 0

is

Label [s]

S1 S2 S3

Ref [s]

Label [v]
Ref [v]

relcl:
poss

:new

relc
l:ne

w

Figure 4. An illustration of dependency tree combination.

are some important discrepancies. One of them comes from
the use of relative clauses in the input query. This stage
of Deepsy fixes such discrepancies and additionally prunes
away some trivial leaves nodes from the tree.
A relative clause, also called adjective clause, modifies a

noun to specify some of its properties. As a clause, it has its
own sentence elements, such as subject, verb, and object. For
Example 1 in Table 1, there are two relative clauses.
Clause-1: It is led with the pronoun “whose” (“whose init

portion declares ...”);
Clause-2: It is led with the pronoun “which” (“which is

initialized to ...”).
When treating relative clauses, the dependency analyzer

in NLP engines always considers that there is an acl:relcl
(stands for relative clause modifier) dependency between the
verb of the clause and the noun that the clause modifies. As
a result, the verb is a child node of the noun, and the subject
and object of the clauses become the child nodes of the verb,
illustrated by the subtrees led by element_1→declares and
by variable→ initialized in Figure 3 (a).
In clause-1, whose indicates the possessive relation of a

noun, and the clause means that “the init portion of ele-
ment_1 (for statement) declares a variable”. In this case, from
ASTMatcher’s point of view, init portion should have a
closer relation with element_1 than declares has—in an-
other word, the matcher of init portion should immediately
follow the matcher of element_1, which is a discrepancy
from the order of nodes in the dependency tree.

Note that such discrepancy does not happen to all relative
clauses. In Clause-2, which refers to the variable and serves
as the subject in the clause, and the clause means “a variable
is initialized to the integer literal 0”. In this case, the subtree
gives an order of nodes that is consistent with the desired
order of the corresponding matchers of those nodes.

So when dealing with this kind of discrepancy, Deepsy dis-
cerns the two kinds of cases. For relative clauses led by whose,
Deepsy restructures the corresponding subtree through the
following steps: (1) attaches the noun modified by whose to
the parent node of the relative clause as its immediate child;
(2) labels the edge between them with an acl:relcl depen-
dency; (3) puts the original parent node of the noun as a child
of that noun, and label that edge with a new dependency we
introduce vact. For other relative clauses, Deepsy does no
restructuring.
In addition, in this stage, Deepsy prunes trivial leaves

(leaves with trivial words) from the tree. These leaves in-
clude several categories: (1) articles (a, an, the) that have
“det” relation with some nouns; (2) relative pronouns (e.g.,

whose, which); (3) the copula verbs that have “cop” (stands
for copula) relation with the complement of the copula verb
(e.g., “is”, “are” related with adjective); (4) dependent words
in the “auxpass” (stands for passive auxiliary) dependency
relation (e.g., “is” related with a verb) (5) words carrying
relation case (stands for case marking) (e.g., is and to in
Figure 3 (a)). These words are not useful for the synthesis
process as they do not map to any matcher.
Figure 3 (b) shows the dependency tree of (a) after the

restructuring and pruning.

4.5 Individual Translation
Based on the tree from the previous stage, this stage tries to
find the potentially suitable ASTmatchers for each individual
word or phrase in the query; this stage does not yet consider
the relations among them. It fills the matcher lists of the
nodes in the dependency tree through two passes of tree
traversal.
Word Translation. In the first pass, for each node in the
dependency tree (except those that have been replaced with
element_id), Deepsy searches the matcher knowledge base
for matchers whose names or descriptions contain a match
with that word. Here, being a match means that the stem of
that word is contained in the names or descriptions of the
matcher. We use the WordNet [33] synonym list to gather
the synonym words, which are also used to find a match
inside the knowledge base.

After the first pass, all the matched matchers are put into
the matcher list of every tree node as their candidate match-
ers. However, there are situations where, one matcher ma-
terializes a phrase rather than a single word. Example 2 in
Table 1 shows such a case. In this example, “binary” has
an ‘amod’ (adjective modifier) dependency on “operator”,
and together they form a phrase which matches matcher
binaryOperator. In the second pass, Deepsy tries to iden-
tify such phrases and update the matcher lists accordingly.
It does it through a longest-match scheme.
Longest-match scheme. The longest-match scheme is in-
spired by the longest-match principle many Scanners take
when tokenizing strings [6]. For a node (say 𝑥) that has
one or more modifiers, Deepsy creates a list mod_list and
adds all its modifiers into the list. It then goes through the
matcher list of node 𝑥 . For each of the candidate matchers,
it checks to see how many times the matcher also appears
in the matcher lists of the nodes in its mod_list; the result
is taken as the score of that matcher. The matchers with the
highest score (ties can happen) are the longest matches for
the phrase. Deepsy then keeps these matchers in the matcher
list of node 𝑥 , removes the other matchers from that list. It
records with each of the matchers the list of modifiers that
the matcher covers; if later, that matcher is selected for node
𝑥 in the final ASTMatcher expression, no matchers will be
taken from the matcher lists of the modifiers in 𝑥 ’s covered
list, as they are already covered in the expression.

Deep NLP-Based Co-evolvement for Synthesizing Code Analysis from Natural Language CC ’21, March 2–3, 2021, Virtual, Republic of Korea

4.6 Candidate Matcher Sets Refinement
In this stage, Deepsy tries to refine the matcher sets of the
nodes in the dependency tree by leveraging two sources of
information: types of the ASTMatcher APIs, and scopes of
the matchers. We do that by creating two techniques, order-
based type-driven focusing and scope-based prioritization.
Order-based type-driven focusing. Although data types
alone are insufficient for this synthesis domain, they are still
useful. As Section 2 mentions, every ASTMatcher has a re-
turn type and possibly one or more arguments of some types.
If a matcher X serves as an argument of another matcher Y,
the return type of X must be compatible with the type of the
argument of Y. Reflected on the dependency tree, this princi-
ple implies that if the order of matchers follows the order of
nodes in the tree, the return type of the matcher of a child
node must be compatible with the type of the corresponding
argument of the parent’s matcher. Order-based type-driven
focusing is to use such type compatibility as constraints to
identify the promising matchers in a node’s matcher list. It
does that by temporarily assuming that the current order of
nodes in the dependency tree is the correct order of matchers
in the final ASTMatcher expression. Although typically most
of the order is correct, it often still has some disparity from
the final order. Therefore, order-based type-driven focusing
does not eliminate the other matchers, only highlights the
promising ones through special marks, such that later stages
can come back to those “unpromising” matchers if necessary
(detailed later).

Order-based type-driven focusing uses the partially final-
ized order to help refine choices of matchers. Although it
helps, it may still leave many matcher lists with more than
one promising matchers. A major reason is the full-fledged
class hierarchy of AST in Clang, as mentioned in Section 2.
Scope-based prioritization. Deepsy takes another pass of
the dependency tree to further discern the promise of the
matchers by leveraging scopes. Here, the scope of a matcher
refers to the number of non-trivial words (i.e., trivial words
are defined in Section 4.4) that its description contains. The
larger the scope is, the more specific the matcher is. For ex-
ample, the description of the matcher varDecl is “Matches
variable declarations” (three non-trivial words) while the de-
scription for the more specific one parmVarDecl is “Matches
parameter variable declarations” (four non-trivial words). If
a node’s matcher whose description contains many words
outside the node, it is a sign that the matcher could be too
specific. For instance, for node “variable” in Figure 3 (b), one
candidate matcher is declaratorDecl whose description is
“Matches declarator declarations (field, variable, function and
non-type template parameter declarations).” The matcher
contains too many non-trivial words other than the word
“variable” and thus is too specific for the node.

So in this pass, for each node, Deepsy computes the extra
scope of every promising matcher in that node’s matcher list;
here, the extra scope is defined as the number of non-trivial
words in that matcher’s description that do not match with

the words contained in that node. Deepsy sorts the promis-
ing matchers in the size of the extra scope; the ones with
the smallest extra scope is regarded as the most promising
matchers.

4.7 Combined Gap Filling
After all the prior stages, each node in the dependency tree
usually has only one promising matcher that has the highest
priority. But there are cases where some nodes do not have
any promising matcher in their matcher lists. There are three
cases.
(1) The node is part of a phrase of its parent node and

its parent node’s matcher (determined through the longest-
match scheme) already covers this node. Such case has no
problem.
(2) Some verbs (e.g., use) represent general relations be-

tween subjects and objects and do not match with any mat-
cher’s name or documentation directly. Such cases need spe-
cial attention because these verbs may suggest the need for
some matchers to connect the matchers of its parent and
siblings or children.
Consider example 3 in Table 1, “find a function that uses

a particular global variable”. The word use here does not
have any single corresponding matcher, but it links “func-
tion” and “variable”, which are respectively translated to
“functionDecl()” and “varDecl()”. Both are node match-
ers; the word “use” should be translated into some narrowing
or traversal matchers to meet the alternative requirement of
ASTMatcher (Section 2).

(3) None of the matchers in a child node match with the
type expected by the parent node. This case suggests two
possibilities: the order of the parent and children nodes needs
some adjustment or some connecting matchers need to be
inserted between them.

To address the gaps caused by cases two and three, Deepsy
employs a combination of three gap filling approaches.
Rule-directed gap filling. For the second case, based on
observations, we create a set of rules for a set of commonly
seen special verbs in that category. These rules help Deepsy
come up with the matchers corresponding to these special
verbs in a query. For the “use” example, the created rule is
that if in dependency tree the matcher of the parent node
of “use” expects an argument of type decl, and the matcher
of the child node of “use” has decl as its return type, insert
hasDecendant(declRefExpr(to())) in between. Or, more
concisely,

decl–use–decl
⇒ decl–hasDecendant(declRefExpr(to)))–decl.

Reorder-based gap filling. For the remaining gaps, Deepsy
explores reordering the parents and children nodes if the
child node is an adjective modifier of the parent. This ex-
ploration is based on our observations that in the design
of ASTMatcher, although most of time the matcher of an
adjective modifier comes after a node it modifies, it may also
appear before, depending on the matchers and contexts. In

CC ’21, March 2–3, 2021, Virtual, Republic of Korea Zifan Nan, Hui Guan, Xipeng Shen, and Chunhua Liao

the exploration, Deepsy uses type consistency (similar to
order-base type-driven focusing) to check all the matchers in
their matcher list, regardless of whether they are marked
as “promising”. The category of a matcher, node, narrowing,
traversal, is taken as part of the type info.
Search-based gap filling. Finally, if there are still gaps
between a parent matcher and a child matcher in the de-
pendency graph, Deepsy resorts to type-driven search to
fill them. Specifically, it does a breadth-first search on the
matcher graph. The matcher graph is a directed graph in the
matcher knowledge base. Each ASTMatcher data type is a
node; an edge 𝑥 → 𝑦 carries label 𝑧 if ASTMatcher 𝑧 has a
return type 𝑥 and an argument of type 𝑦.

Let 𝑝 and 𝑐 be the parent and child matchers with gaps in
between. The breadth-first search starts from the expected
argument type of 𝑝 , and stops if it reaches the return type of
𝑐 or has reached the upper limit of the number of hops (set
to 3 in our experiments). The hop limit prevents the search
from falling into dead loops as the graph contains cycles.
The matcher equals in Figure 3 (c) is found through

such a process. The return type of node 0 is double value
(ASTMatcher treats all numerical values as double value
or unsigned value), while the input type of the matcher
integerLiteral() is IntegerLiteral. The search finds
matcher equals() which takes double value as input and
returns IntegerLiteral, which fills the gap.
The three gap filling methods focus on different cases;

the combined approach takes advantage of them all, and
is successful in addressing most gaps in our experiments
(reported next).

5 Evaluation
We conduct a set of experiments to examine the efficacy
of the Deepsy framework. Our experiments are designed
to answer the following major questions: (1) What is the
accuracy of Deepsy on synthesizing matcher expressions
based on natural language inputs, and how does that compare
with prior solutions? (2) How much benefit can we get from
each decision made in the synthesis process? (3) How much
time does the synthesis take?
We first describe the experiment settings in Section 5.1,

then report our experiment results and comparisons in Sec-
tions 5.2 and 5.4 to answer the questions. In Section 5.3, we
further provide a detailed error analysis in several represen-
tative cases.

5.1 Methodology
Dataset. For tests, we collect 90 real-world ASTMatcher ex-
pressions, with 82 from the usage of ASTMatcher in Clang-
tidy [4], and 8 from ASTMatcher tutorial [5] and blogs [18].
The expressions from the tutorial and blogs have English
descriptions, but those from Clang-tidy do not. We hired
five graduate students to write English descriptions for the
cases after receiving a 20-min tutorial of ASTMatcher. We

end up with two single-sentence descriptions from two hu-
mans for each of 50 matcher expressions, one multi-sentence
description for each of the remaining 40 matcher expres-
sions. Totally, there are 140 English descriptions (listed in
supplementary material).

Evaluation Metrics. We use four metrics to evaluate the
performance: (1) Overall accuracy. This is the ratio between
the number of correctly synthesized ASTMatcher expres-
sions and the number of total test cases. A synthesized AST-
Matcher expression is correct if it is identical to the ground
truth matcher expression in terms of both the set of match-
ers and their relative order. (2) Accuracy on easy cases and
hard cases. These metrics show the effects of the number
of matchers in an expression on the accuracy of Deepsy. A
matcher expression is easy if it contains less than 5 matchers;
Otherwise, it is hard. (3) Individual matcher accuracy (Inner
accuracy). It is the ratio between the number of correctly
found matchers in a synthesized matcher expression and
the total number matchers in the ground truth matcher ex-
pression. (4) Execution time. It is the time to synthesize a
complete matcher expression from NLP parsing results.

Methods for Comparison. For overall accuracy of single
sentence test cases, we have compared Deepsy with a prior
rule-based method and two variants of Deepsy:
(1) SmartSynth [23]. We pick SmartSynth for several rea-

sons. First, it is a rule-based synthesizer, requiring no labeled
examples for training, which is a property necessary for AST-
Matcher for the lack of labeled samples in the domain. Sec-
ond, it showed promising results in synthesizing smartphone
codelets (reported 90% accuracy), dealing with a domain with
106 operations/APIs. There are some synthesizers proposed
later. They combine the rule-based method with machine
learning, rather than to enhance its capability in tackling
complex domains with scarce labeled data. In fact, the do-
mains evaluated in later studies—such as text editing [7],
SQL expression [24], spreadsheet programming [14] —are
even smaller than the one SmartSynth tackles. SmartSynth is
the most promising prior work that we have found for code
synthesis in complex domains with scarce labeled data.
(2) Deepsy- w/o type-driven. This is Deepsy but without

the order-based type-driven focusing step;
(3) Deepsy-rand selection. This is Deepsy with the scope-

based prioritization replaced with a random-select prioriti-
zation.

The two variants of Deepsy help us examine the benefits
brought by the two focusing and prioritization techniques.
We in addition report the quality of the result by Deepsy
in a step by step manner to show the benefits from each
individual technique it uses.
For comparison, we implemented the method in Smart-

Synth and applied it on all single sentence test cases. Our
implementation first tagged each of ASTMatcher APIs with
its name and the keywords in its description. For a given
input sentence, the original SmartSynth uses an iterative

Deep NLP-Based Co-evolvement for Synthesizing Code Analysis from Natural Language CC ’21, March 2–3, 2021, Virtual, Republic of Korea

Smart
Synth

Deepsy-
rand se-
lection

Deepsy-
w/o type
-driven

Deepsy
 single

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

(%
) 52

30

62
70

(a) Overall Accuracy of Deepsy
and SmartSynth on

single sentence test cases.

Overall Easy Hard Correct
 parsing

0

20

40

60

80

100

Ac
cu

ra
cy

(%
)

70.0
78.3

60.0

80.0
75.0

82.4

69.6
77.5

(b) Accuracy comparison on
single/multi sentence test cases

Single sent. Multi-sent.

Figure 5. Accuracy comparison.

search to find a good way to separate it into chunks. To pre-
vent wrong chunking results from hurting the later steps,
we always use correct chunking results. In the mapping step,
for each chunk, SmartSynth selects the APIs whose labels
are related with the chunk. It then enters the dataflow rela-
tions discovery step, in which, it determines the order the
selected APIs mainly based on data types and the distance
between chunks in the input sentence. It uses some rules to
help detect dataflow relations.
All our experiments were performed on a machine that

equipped with an 4-core 2.6GHz Intel® Core(TM) i7-6700
(8GB RAM).

5.2 Overall Results
The average execution time for the synthesis process in
Deepsy takes only 0.19s. Our discussion hence concentrates
on the synthesis accuracy.
The overall accuracy of Deepsy is shown in Figure 5(a).

Deepsy correctly generates 70 matcher expressions out of
the 100 single sentence cases, achieving an accuracy of 70.0%;
it correctly produces 29 matcher expressions out of the 40
multi-sentence cases, achieving an accuracy of 72.5%.
Deepsy- w/o type-driven hits 62 matcher expressions,

which is 62.0% accuracy. Deepsy-rand selection achieves
only an accuracy of 30.0%. Inside Deepsy, the type-driven
step is used to identify the promising matchers whose type
is compatible with its parent and children, while the scope-
based prioritization is a decisionmaking step that determines
the promising matcher.

For the inner accuracy, Deepsy, Deepsy-w/o type-driven,
and Deepsy-rand selection achieve an accuracy of 85.1%,
80.7%, 62.1% respectively. Similar to the overall accuracy, a
correct matcher can be possibly selected without the type-
driven step but is not likely to be identified with a random
choice. Deepsy achieves the highest inner accuracy, implying
the necessity of including both the steps.

The overall expression-level accuracy from SmartSynth is
52%, significantly lower than the 68% accuracy from Deepsy.
The large errors come from its lack of considerations of the
dependency relations and treatment to the tangled concerns
between mapping and ordering. SmartSynth heavily relies
on data types and distances rather than dependency relations

among chunks, and deals with the mapping and ordering in
a loosely coupled manner.

Consider Example 3 in Table 1. Suppose that the mapping
step selects the correct matchers, and correctly produces the
first part of the expression, functionDecl(hasDescendant
(declRefExpre(to()))). The matcher to() expects type
Decl as its argument’s type. The rest of the matcher APIs,
hasGlobalStorage() (denoted as A), varDecl() (as B), has
Name() (as C), all return Decl or a descendant class of Decl.
So (A, B, C), (A, B(C)), (B(A), C), are all possible orders that
give correct data types. The issue is addressed in Deepsy for
its consideration of the semantic connections among the dif-
ferent parts of the NL query. The co-evolvement helps deliver
the effects in both mapping and ordering in a synergistic
way.

Figure 5(b) shows the accuracy of Deepsy onmulti-sentence
descriptions, and on easy and hard expressions. Deepsy
achieves 75.0% accuracy on 40 multi-sentence test cases. For
easy expressions, Deepsy achieves an accuracy of 78.3% for
single sentences and 82.4% for multi-sentences. For hard ex-
pressions, the single sentence cases and multi-sentence cases
have an accuracy of 60.0% and 65.2%, respectively.

If the dependency parsing could be improved to avoid NL
parsing errors (here we manually correct the dependency
tree), the accuracy of the single sentence cases jumps to 80%
and multi-sentence cases to 77.5%. Correcting parsing errors
benefits more for the single-sentence descriptions than the
multi-sentence ones. It is because dependency parsing is
prone to make more mistakes for a complex single sentence.

5.3 Error Analysis
In this section, we analyze the cases where Deepsy fails to
synthesize correct matching expressions. Three reasons are
responsible for the errors: wrong decisions in search-based
gap filling and scope-based prioritization, and limitations in
dependency parsing. We elaborate on each reason using one
test case as an example. The example test cases are listed in
Table 3.

Wrong decisions in search-based gap filling. The first test
case in Table 3 falls into this case. Two neighbored nodes in
the dependency tree of the English description are mapped
to the matcher cxxMemberCallExpr and the matcher cxx-
MethodDecl respectively. Due to the alternative restriction,
search-based gap filling searchs within the matcher graph
for an appropriate matcher or a sequence of matchers to fill
in the gap. The searched results contain both the matcher
callee and the matcher thisPointerType. Since the return
type of thisPointerType exactly matches the input type of
cxxMemberCallExpr while callee returns an inheritance
type, thisPointerType has higher priority and is selected
as the gap filling matcher.

Wrong decisions in scope-based prioritization. Scope-based
prioritization prefers a matcher with the smallest extra scope.
For the second test case in Table 3, hasConditionVariable-
Statement instead of hasCondition is chosen in this step

CC ’21, March 2–3, 2021, Virtual, Republic of Korea Zifan Nan, Hui Guan, Xipeng Shen, and Chunhua Liao

Table 3. Errors in synthesizing matcher expressions.
No. English description Matcher expression Error expression Reason

1 Find all c++ call expression of
the c++ method named string_1.

cxxMemberCallExpr(callee(
cxxMethodDecl(hasName(string_1)

cxxMemberCallExpr(thisPointerType(
cxxMethodDecl(hasName(string_1)

search-based
gap filling

2 Find if statement whose condition
is smaller than 10.

ifStmt(hasCondition(
binaryOperator(
hasOperatorName("<"),
hasRHS(integerLiteral(equals(10))))))

ifStmt(hasConditionVariableStatement(
binaryOperator(
hasOperatorName("<"),
hasRHS(integerLiteral(equals(10))))))

scope-based
prioritization

3 a Find call expression which calls
the function named string_1. callExpr(callee(

functionDecl(
hasName(string_1))))

callExpr(callee(typedefNameDecl(
functionType(string_1))))

dependency
parsing

b Find call expression which calls the
function whose name is string_1 (The synthesized expression is correct) −

Table 4. Benefits of steps: the numbers of correct matcher
APIs after each step.

ID Ground
truth

Word
trans.

Longest-
match
phrase
trans.

Order-
based
type-
driven
focusing

Scope-
based
prioriti-
zation

Rule-
directed
gap
filling

Reorder-
based
gap
filling

Search-
based
gap
filling

1 8 1 1 2 5 8 8 8
2 9 2 2 3 6 6 8 9
3 7 1 2 2 4 7 7 7
4 3 0 0 0 2 2 3 3
5 5 1 1 2 4 4 5 5
6 9 2 2 3 3 9 9 9
7 5 1 1 1 2 4 5 5
8 5 1 1 2 4 5 5 5
9 3 0 0 0 2 2 2 3
10 5 0 0 0 4 4 4 5
1. Search for all the functions that use a particular global variable named “PI”.
2. Find for loops whose init portions declare a single variable which is initialized to
the integer literal 0.
3. Search for all call expressions that use a function named “pi”.
4. Return field declarations whose types are a typedef.
5. Return all cxx call expressions which call the cxx method named “cxxfunc”.
6. Get for statements whose conditions are less than 10.
7. Return call expressions which call the function whose name is “func”.
8. Find all call expressions of a function whose name is “func”.
9. Search for all binary operators whose operator names are “=”.
10. Find call expressions whose argument is a C-style cast expression with
destination type being a real floating point.

because the former one has a longer description and thus a
smaller extra scope. More knowledge of matchers may help
this situation.
Limitations in dependency parsing. For the third example

in Table 3, we list two sentences that have the same matcher
expression. Although the two sentences have the same mean-
ing, only the query in 3.b yields the correct matcher expres-
sion. The dependency parsing result of the query in 3.a treats
“named” wrong and puts it as the parent node of “function”,
resulting in a wrong matcher order and thus an incorrect
matching expression. Dealing with the NLP errors is deferred
to our future work.

5.4 Benefits from Each Individual Step
We report the benefits of each step in Deepsy by showing the
match score after each step for ten of the test cases. Thematch
score is the number of matchers which have been decided
correctly. The result is shown in Table 4. The second column
“Ground truth” shows the results in the ground truth. The
following columns are the steps of Deepsy, and we report

the scores after each step. The NL queries are listed below
the table.
According to Table 4, as Deepsy processes a dependency

tree step by step, the match score increases gradually. After
the word translation step, the match score is usually one or
two because the nodes with special terms in the dependency
tree are successfully matched to some basic matchers (e.g.,
forStmt for for loop). For each of the remaining nodes, a
list of candidate matchers (i.e. matcher list) are created and
will be refined in the following steps. In most of the cases,
the match score increases significantly after the scope-based
prioritization step. It is because this step identifies the most
promising matcher from the matcher list of each node and
some of the decisions are correct. In some cases, rule-directed
gap filling also contributes to a large increase in the match
scores because special verbs (e.g. “use”) are mapped to a
sequence of matchers in the step.
In most of the cases, the top-down order of the nodes

in a dependency tree already give a correct order for the
corresponding matchers. The discrepancies appear in several
cases. For instance, test case 2 in Table 4 has a wrong order
initially due to the use of relative clauses. The tree reordering
by Deepsy fixes all of the ordering issues in the test cases
successfully.

6 Discussions
Although the synthesis results are not always correct, they
can still be useful. For instance, an IDE integrated with
Deepsy can suggest several top choices of expressions for
a programmer to pick. Even if minor fixes may be needed
occasionally, it is still much easier than manually coming
up with the whole expression from scratch based on the 500
APIs and a full-fledged type hierarchy.

Our experiments show that using simple tags to help with
coreference resolution offers a good tradeoff between the
synthesis accuracy and usability. The inconveniences it adds
to users is insignificant according to the feedback from the
subjects who created the test cases. As automatic coreference
resolution techniques in NLP improve, the tagging can be
eventually replaced with automatic analysis.

Deep NLP-Based Co-evolvement for Synthesizing Code Analysis from Natural Language CC ’21, March 2–3, 2021, Virtual, Republic of Korea

7 Related Work
Program Synthesis is the task of automatically synthesizing
a program that satisfies the user intent expressed in the form
of some specification [15]. A specification can be first order
logic expressions [13], a set of input/output examples [11, 12],
natural language [7, 14, 23, 39, 44], partial programs [9, 41]
or any other form that is easier to write than the expected
program. As Deepsy is a natural language-based synthesizer,
we concentrate on prior work on program synthesis from
natural language (NL).

Recent efforts have been spent on machine learning-based
approaches [1, 2, 7, 8, 10, 16, 17, 20, 25–27, 35–37, 39, 42, 45].
Rule-based approaches have been developed to synthesize
programs for domain-specific tasks such as smartphone au-
tomation [23], SQL queries [24, 44], and SpreadSheet data
analysis [14]. The most complex domain among them is the
smartphone automation [23]. The complexity is still much
more limited compared to ASTMatcher. The previous section
has provided a quantitative comparison with the previous
rule-based method.
Some works try to identify some statistical patterns of

API usage. Examples include code search tools [29, 32], API
usage pattern mining [38, 43], API sequence generation [10].
These studies rely on statistical machine learning techniques.
They hence require a large set of examples, making them
hard to apply to program analysis.

8 Conclusion
This paper presents Deepsy, one of the first NL-based synthe-
sizers for ASTMatcher to help general programmers conduct
program analysis. Deepsy features dependency tree-based
co-evolvement, a novel design that leverages dependency re-
lations from NL dependency analysis [19] and synergizes NLP
techniques and domain knowledge. It is worth mentioning
that the demonstrated potential of NL dependency analysis
for program synthesis has led the authors to the development
of a more general approach, namedHuman-Learning Inspired
Program Synthesis, described in another paper [34], which
combines the NL depedency analysis and grammar-guided
synthesis together, producing a synthesizer with an even
greater applicability and accuracy.

Acknowledgments
This material is based upon work supported by the National
Science Foundation (NSF) under Grants CNS-1717425, CCF-
1703487, CCF-2028850, and the Department of Energy (DOE)
under Grant DE-SC0013700. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of NSF or DOE.

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National Lab-
oratory under Contract DE-AC52-07NA27344. Initial work
was supported by LLNL-LDRD 18-ERD-006 (LLNL-CONF-
794949). Revisions were funded through subsequent support
from the U.S. DOE Advanced Scientific Computing Research.

References
[1] Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik Sen, and Ion Stoica.

2019. AutoPandas: neural-backed generators for program synthesis.
Proceedings of the ACM on Programming Languages 3, OOPSLA (2019),
1–27.

[2] Yanju Chen, Ruben Martins, and Yu Feng. 2019. Maximal multi-layer
specification synthesis. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 602–612.

[3] The Clang-Team. [n.d.]. ASTMatcher Reference. clang.llvm.org/docs/
LibASTMatchersReference.html.

[4] The Clang-Team. [n.d.]. Clang. clang.llvm.org..
[5] The Clang-Team. [n.d.]. Tutorial for building tools using LibTooling

and LibASTMatchers. clang.llvm.org/docs/LibASTMatchersTutorial.
html.

[6] Keith Cooper and Linda Torczon. 2011. Engineering a compiler. Else-
vier.

[7] Aditya Desai, Sumit Gulwani, Vineet Hingorani, Nidhi Jain, Amey
Karkare, Mark Marron, Subhajit Roy, et al. 2016. Program synthe-
sis using natural language. In Proceedings of the 38th International
Conference on Software Engineering. ACM, 345–356.

[8] Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh,
Abdel-rahmanMohamed, and Pushmeet Kohli. 2017. Robustfill: Neural
program learning under noisy i/o. In Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70. JMLR. org, 990–998.

[9] Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W
Reps. 2017. Component-based synthesis for complex APIs. ACM
SIGPLAN Notices 52, 1 (2017), 599–612.

[10] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim.
2016. Deep API learning. In Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. ACM,
631–642.

[11] Sumit Gulwani. 2011. Automating string processing in spreadsheets
using input-output examples. In ACM SIGPLAN Notices, Vol. 46. ACM,
317–330.

[12] Sumit Gulwani. 2012. Synthesis from examples: Interaction models
and algorithms. In Symbolic and Numeric Algorithms for Scientific
Computing (SYNASC), 2012 14th International Symposium on. IEEE,
8–14.

[13] Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkate-
san. 2011. Synthesis of loop-free programs. ACM SIGPLAN Notices 46,
6 (2011), 62–73.

[14] Sumit Gulwani and Mark Marron. 2014. Nlyze: Interactive program-
ming by natural language for spreadsheet data analysis and manipula-
tion. In Proceedings of the 2014 ACM SIGMOD international conference
on Management of data. ACM, 803–814.

[15] Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. 2017. Program
synthesis. Foundations and Trends® in Programming Languages 4, 1-2
(2017), 1–119.

[16] Tihomir Gvero and Viktor Kuncak. 2015. Synthesizing Java expressions
from free-form queries. InAcm Sigplan Notices, Vol. 50. ACM, 416–432.

[17] Gang Hu, Linjie Zhu, and Junfeng Yang. 2018. AppFlow: using ma-
chine learning to synthesize robust, reusable UI tests. In Proceedings
of the 2018 26th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering.
269–282.

[18] Tim Kelley. 2017. FINDING GLOBAL VARIABLES WITH CLANG
AST MATCHERS. https://variousburglarious.com/2017/01/18/finding-
global-variables-with-clang-ast-matchers/. Accessed: 2018-11-14.

[19] Sandra Kübler, Ryan McDonald, and Joakim Nivre. 2009. Dependency
parsing. Synthesis Lectures on Human Language Technologies 1, 1 (2009),
1–127.

[20] Gregory Kuhlmann, Peter Stone, Raymond Mooney, and Jude Shav-
lik. 2004. Guiding a reinforcement learner with natural language

clang.llvm.org/docs/LibASTMatchersReference.html
clang.llvm.org/docs/LibASTMatchersReference.html
clang.llvm.org.
clang.llvm.org/docs/LibASTMatchersTutorial.html
clang.llvm.org/docs/LibASTMatchersTutorial.html
https://variousburglarious.com/2017/01/18/finding-global-variables-with-clang-ast-matchers/
https://variousburglarious.com/2017/01/18/finding-global-variables-with-clang-ast-matchers/

CC ’21, March 2–3, 2021, Virtual, Republic of Korea Zifan Nan, Hui Guan, Xipeng Shen, and Chunhua Liao

advice: Initial results in RoboCup soccer. In The AAAI-2004 workshop
on supervisory control of learning and adaptive systems. San Jose, CA.

[21] Nate Kushman and Regina Barzilay. 2013. Using semantic unification
to generate regular expressions from natural language. In Proceedings
of the 2013 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies. 826–836.

[22] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In Proceedings
of the international symposium on Code generation and optimization:
feedback-directed and runtime optimization. IEEE Computer Society,
75.

[23] Vu Le, Sumit Gulwani, and Zhendong Su. 2013. Smartsynth: Syn-
thesizing smartphone automation scripts from natural language. In
Proceeding of the 11th annual international conference onMobile systems,
applications, and services. ACM, 193–206.

[24] Fei Li and HV Jagadish. 2014. Constructing an interactive natural
language interface for relational databases. Proceedings of the VLDB
Endowment 8, 1 (2014), 73–84.

[25] Xi Victoria Lin, Chenglong Wang, Deric Pang, Kevin Vu, Luke Zettle-
moyer, and Michael D Ernst. 2017. Program synthesis from natural
language using recurrent neural networks. University of Washington
Department of Computer Science and Engineering, Seattle, WA, USA,
Tech. Rep. UW-CSE-17-03-01 (2017).

[26] Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D
Ernst. 2018. NL2Bash: A Corpus and Semantic Parser for Natural
Language Interface to the Linux Operating System. arXiv preprint
arXiv:1802.08979 (2018).

[27] Wang Ling, Edward Grefenstette, Karl Moritz Hermann, Tomáš
Kočiskỳ, Andrew Senior, Fumin Wang, and Phil Blunsom. 2016. Latent
predictor networks for code generation. arXiv preprint arXiv:1603.06744
(2016).

[28] Nicholas Locascio, Karthik Narasimhan, Eduardo DeLeon, Nate Kush-
man, and Regina Barzilay. 2016. Neural generation of regular expres-
sions from natural language with minimal domain knowledge. arXiv
preprint arXiv:1608.03000 (2016).

[29] Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang, Dongmei
Zhang, and Jianjun Zhao. 2015. Codehow: Effective code search based
on api understanding and extended boolean model (e). In Automated
Software Engineering (ASE), 2015 30th IEEE/ACM International Confer-
ence on. IEEE, 260–270.

[30] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel,
Steven J. Bethard, and David McClosky. 2014. The Stanford CoreNLP
Natural Language Processing Toolkit. In Association for Computational
Linguistics (ACL) System Demonstrations. 55–60. http://www.aclweb.
org/anthology/P/P14/P14-5010

[31] Mehdi Hafezi Manshadi, Daniel Gildea, and James F Allen. 2013. In-
tegrating Programming by Example and Natural Language Program-
ming.. In AAAI.

[32] Collin McMillan, Mark Grechanik, Denys Poshyvanyk, Qing Xie, and
Chen Fu. 2011. Portfolio: finding relevant functions and their usage. In

Proceedings of the 33rd International Conference on Software Engineering.
ACM, 111–120.

[33] George A Miller. 1995. WordNet: a lexical database for English. Com-
mun. ACM 38, 11 (1995), 39–41.

[34] Zifan Nan, Hui Guan, and Xipeng Shen. 2020. HISyn: human learning-
inspired natural language programming. In The ACM Joint European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE),.

[35] Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li,
Dengyong Zhou, and Pushmeet Kohli. 2016. Neuro-symbolic program
synthesis. arXiv preprint arXiv:1611.01855 (2016).

[36] Illia Polosukhin and Alexander Skidanov. 2018. Neural Program Search:
Solving Programming Tasks from Description and Examples. arXiv
preprint arXiv:1802.04335 (2018).

[37] Chris Quirk, Raymond Mooney, and Michel Galley. 2015. Language
to code: Learning semantic parsers for if-this-then-that recipes. In
Proceedings of the 53rd Annual Meeting of the Association for Computa-
tional Linguistics and the 7th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). 878–888.

[38] Mukund Raghothaman, Yi Wei, and Youssef Hamadi. 2016. SWIM:
Synthesizing What I Mean-Code Search and Idiomatic Snippet Synthe-
sis. In Software Engineering (ICSE), 2016 IEEE/ACM 38th International
Conference on. IEEE, 357–367.

[39] Mohammad Raza, Sumit Gulwani, and Natasa Milic-Frayling. 2015.
Compositional Program Synthesis from Natural Language and Exam-
ples.. In IJCAI. 792–800.

[40] Marta Recasens, Marie-Catherine de Marneffe, and Christopher Potts.
2013. The life and death of discourse entities: Identifying singleton
mentions. In Proceedings of the 2013 Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics: Human
Language Technologies. 627–633.

[41] Armando Solar-Lezama and Rastislav Bodik. 2008. Program synthesis
by sketching. Citeseer.

[42] Yu Su, Ahmed Hassan Awadallah, Madian Khabsa, Patrick Pantel,
Michael Gamon, and Mark Encarnacion. 2017. Building natural lan-
guage interfaces to web apis. In Proceedings of the 2017 ACM on Con-
ference on Information and Knowledge Management. ACM, 177–186.

[43] Tao Xie and Jian Pei. 2006. MAPO: Mining API usages from open
source repositories. In Proceedings of the 2006 international workshop
on Mining software repositories. ACM, 54–57.

[44] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig.
2017. SQLizer: query synthesis from natural language. Proceedings of
the ACM on Programming Languages 1, OOPSLA (2017), 63.

[45] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL:
Generating structured queries from natural language using reinforce-
ment learning. arXiv preprint arXiv:1709.00103 (2017).

[46] Zexuan Zhong, Jiaqi Guo, Wei Yang, Tao Xie, Jian-Guang Lou, Ting
Liu, and Dongmei Zhang. 2018. Generating Regular Expressions from
Natural Language Specifications: Are We There Yet?. In Workshops at
the Thirty-Second AAAI Conference on Artificial Intelligence.

http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010

	Abstract
	1 Introduction
	2 Background
	3 Challenges and Solution Overview
	4 Internals of Deepsy
	4.1 Matcher Knowledge Base Construction
	4.2 Amended NLP
	4.3 Dependency Tree Combination
	4.4 Tree Reordering and Pruning
	4.5 Individual Translation
	4.6 Candidate Matcher Sets Refinement
	4.7 Combined Gap Filling

	5 Evaluation
	5.1 Methodology
	5.2 Overall Results
	5.3 Error Analysis
	5.4 Benefits from Each Individual Step

	6 Discussions
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

